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Radiative corrections to elastic electron-proton scattering for polarized electrons
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~Received 23 November 1999; published 17 March 2000!

We analyze the radiative correction to high energy elastic electron-proton scattering of polarized electrons.
We show that if the approximations inherent in the calculations developed by Tsai and given in the work of Mo
and Tsai which have been used in the analysis of almost all experimental data pertaining to medium and high
energy elastic electron scattering for the past three decades are maintained, then the same radiative correction
applies both in the case of initially polarized and unpolarized electrons.

PACS number~s!: 25.30.Bf, 13.10.1q, 13.40.Ks, 13.60.Fz
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I. INTRODUCTION

The radiative correction to elastic electron-proton scat
ing is well known from the work of Tsai@1# and Mo and Tsai
@2#, and the expressions given in@2# have been used in th
analysis of almost all experimental data pertaining to m
dium and high energy elastic electron scattering for the p
three decades. Very recently, experiments using polar
electron beams have been carried out at Jefferson Lab@3#;
specifically, longitudinally polarized electrons were scatte
from unpolarized protons (eWp→epW ) and the transverse an
longitudinal polarizations of the recoil protons were me
sured in order to obtain the ratio of the proton’s elastic el
tromagnetic form factorsGEp

/GM p
. Given that radiative cor-

rections to elastic electron-proton scattering are generall
the order of 20–30 % for four-momentum transfer squared
the range considered in these experiments@0.5 to 3.5
(GeV/c)2#, the question arises as to whether the same ra
tive correction used in the case of unpolarized beams
targets can be applied in the case of polarized electron be
when the polarization of the recoil proton is measured.
show here that if the approximations inherent in the calcu
tions developed in@1# and given in@2# are maintained, then
the same radiative correction applies both in the case of
tially polarized and unpolarized electrons. In Sec. II w
present the cross section for the scattering of polarized e
trons from unpolarized protons in the absence of radia
corrections. In Sec. III we give each of the matrix eleme
associated with the radiative correction and discuss the
nificant approximations that are made in@1# to evaluate their
contribution to the cross section. We then show that w
these approximations the radiative corrections do not dep
on the polarization of either the electron or the proton in
initial or final state.

II. DIFFERENTIAL CROSS SECTION FOR SCATTERING
OF POLARIZED ELECTRONS

The differential cross section for the scattering of pol
ized electrons from unpolarized protons can be derived u
standard techniques of quantum electrodynamics. We fol
the conventions of Bjorken and Drell@4#; the metric is
defined by pi•pj5e ie j2pi•pj . Further, a5e2/4p
51/137.036;m is the electron rest mass;M is the target
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nucleus rest mass;k the anomalous magnetic moment of th
proton;p1 andp3 the initial and final electron four-moment
respectively;p2 and p4 the initial and final target nucleu
four-momenta respectively;q5p12p35p42p2 is the four-
momentum transfer to the target nucleus for elastic sca
ing.

For one-photon exchange the matrix element is

M05e2ū~p3!gmu~p1!
~2 i !

q21 i e
ū~p4!Gm~q2!u~p2!, ~2.1!

whose magnitude squared summed over final electron
and averaged over initial proton spin is

uM̄0u25
1

2
Tr$gnL3gmL1S1%Tr$S4L4GmL2G̃n%, ~2.2!

whereL i5(p” i1mi)/(2mi) andS i5(11g5s” i)/2 are energy
and spin projection operators and

Gm5F1~q2!gm1kF2~q2!
ismaqa

2M
, ~ G̃n[g0Gn

†g0! ~2.3!

is the proton-current operator. We assume high energies
the initial and final electrons (e1,e3@m) and large momen-
tum transfers (2q2@m2). Further, we express the cross se
tion in terms of the Sachs form factorsGE(q2) andGM(q2),
which are defined in terms ofF1 andF2 by

GE5F12tkF2, GM5F11kF2 , ~2.4!

wheret52q2/4M2. Finally we express the spin polarizatio
four-vectors of the initial electron and final proton,s1 ands4,
respectively, in terms of the three-dimensional unit vect
specifying the spin direction of the particles in their respe
tive rest framesz1 andz4. In general for a particle of massm
and four-momentump5(e,p), the four-vectors is given in
terms ofz by @5,6#

s05
z•p

m
, ~2.5!

s5z1pF z•p

m~m1e!G .
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For the initial electron we have, neglecting terms of relat
orderm/e1 ,

s18hp1 /m, ~2.6!
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04550
ewhereh5z1•p̂. The cross section for the scattering of hig
energy polarized electrons into the directionu by unpolar-
ized protons initially at rest is then
ds

dV
5

a2e3 cos2
u

2

4e1
3 sin4

u

2

1

~11t! H GE
21tGM

2 12t~11t!GM
2 tan2

u

2

1hFe11e3

M
At~11t!GM

2 tan2
u

2
z4• ẑ22At~11t!GMGE tan

u

2
z4• x̂GJ , ~2.7!
e
at-
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n

where we take the unit vectorẑ in the direction ofp4, the
unit vectorŷ in the direction ofp13p3 ~i.e., perpendicular to
the scattering plane!, and the unit vectorx̂ in the scattering
plane and defined byx̂5 ŷ3 ẑ.

In Eq. ~2.7! the spin-independent terms give the we
known Rosenbluth cross section. The remaining terms de
mine the longitudinal and perpendicular polarization of t
recoil proton@8#.

III. RADIATIVE CORRECTIONS TO ELASTIC
ELECTRON-PROTON SCATTERING

In this section we consider each of the terms contribut
to the radiative correction to elastic electron-proton scat
ing as treated in the generally used analysis given in@1# and
@2#. We show that if one makes the approximations wh
are inherent to the derivation given in these references
the radiative correction to elastic electron-proton scatterin
the same for polarized and unpolarized electrons and
tons.

The radiative correction is comprised of the purely elas
amplitudes~electron and proton vertex corrections, electr
and proton self energies, box and crossed box diagrams
vacuum polarization terms! and inelastic amplitudes~emis-
sion of soft bremsstrahlung photons by any of the char
particles!. Let us consider each of these in turn. The cro
section for emission of soft photonsdsbrem, is simply equal
to a factor which multiplies the one-photon exchange cr
sectionds, and that factor is independent of the spins of t
electrons and protons:

dsbrem52
a

4p2
dsE 8d3k

v S p3

p3•k
2

p1

p1•k
2

p4

p4•k
1

p2

p2•kD 2

.

~3.1!

Consider next the radiative corrections to the purely e
tic cross section. To lowest order ina these are found from
the cross product of the matrix element for one-photon
change,M0, and the matrix elements for each of the high
order processes:

uMu25uM0u212 Re$M0
†~M11M21••• !%. ~3.2!
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Thus, provided the matrix elementsM1 ,M2 , . . . can be ex-
pressed asM0 times a factor which is independent of th
spin of the particles, the radiative correction for elastic sc
tering will factor as a spin-independent term.

The matrix element for vacuum polarization,M1, is, after
charge renormalization, related simply to the matrix elem
M0 by

M15M0(
i

P~q2/mi
2! ~3.3!

in which P(q2/mi
2) is independent of the spins of the pa

ticles @7,4# and the sum is carried over the electron a
higher mass particle-antiparticle loops.

The matrix element for the electron vertex correction,M2,
is given by

M25Ze2ū~p3!Lm~p3, p1!u~p1!
~2 i !

q21 i e
ū~p4!Gm~q2!u~p2!,

~3.4!

where

Lm~p3, p1!52 ie2E d4k

~2p!4

1

k22l21 i e

3gn
1

~p” 32k”2m1 i e!

3gm
1

~p” 12k”2m1 i e!
gn . ~3.5!

Comparing Eq.~3.4! with Eq. ~2.1! we see that if the spin-
operator dependence inLm(p3, p1) reduces togm, thenM2
will be a multiple ofM0 , the factor being independent of th
spins of the particles. As it stands, the integral forLm(p3,p1)
is divergent. However, if we introduce a convergence fac
2L2/(k22L21 i e), in the integrand then the integratio
can be carried out, and taking the limitL→` we find that
Lm(p3 ,p1) has the formG1(q2)gm1G2(q2)( ismnqn/2m)
where
2-2
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G1
(e)~q2!5

a

4p H 22~2m22q2!f1~l2!

1S 3r224m2

rr1
D ln x1

1

2
1 lnS L2

m2D J ~3.6!

and

G2
(e)~q2!5

a

4p H 4m2

rr1
ln xJ ~3.7!

in which

f1~l2! ——→
l→0

1

rr1
H 22LS 2

1

xD2
p2

6
2

1

2
ln2xJ

1 ln x lnS r2

l2D J ,

~3.8!

L~z!52E
0

z ln~12t !

t
dt,

with r252q214m2, r1
252q2, and x5(r1r1)/(r2r1)

5(r1r1)2/4m2. Thus for2q2@m2 the termG2(q2) is of
order m2/(2q2) relative toG1(q2) and hence may be ne
glected so that we haveM25G1(q2)M0. The inclusion of
the self-energy contribution for the electron is obtained
subtractingLm(p1, p1) from the expression given in Eq
~3.5!, giving

M̃25@G1~q2!2G1~0!#M0 , ~3.9!

where for2q2@m2

G1~q2!2G1~0!5
a

2p H 2
1

2
ln2S 2q2

m2 D 1
p2

6

2F lnS 2q2

m2 D 21G lnS m2

l2 D
1

3

2
lnS 2q2

m2 D 22J . ~3.10!

Finally, we consider the proton vertex correction and
box and crossed box contributionsM3 , M4 , andM5, respec-
tively. The matrix elements for these corrections are giv
by

M35Z3e2ū~p3!gmu~p1!
~2 i !

q21 i e
ū~p4!Lm~p4, p2!u~p2!,

~3.11!

with
04550
y

e

n

Lm~p4, p2!52 ie2E d4k

~2p!4

1

k22l21 i e

3Gn~k2!
1

~p” 42k”2M1 i e!
Gm~q2!

3
1

~p” 22k”2M1 i e!
Gn~k2!, ~3.12!

M45~Ze2!2E d4k

~2p!4

1

k22l21 i e

1

~k2q!22l21 i e

3F ū~p3!gn
1

p” 12k”2m1 i e
gmu~p1!G

3F ū~p4!Gn~~k2q!2!
1

p” 21k”2M1 i e

3Gm~k2!u~p2!G , ~3.13!

and

M55~Ze2!2E d4k

~2p!4

1

k22l21 i e

1

~k2q!22l21 i e

3F ū~p3!gn
1

p” 12k”2m1 i e
gmu~p1!G

3F ū~p4!Gm~k2!
1

p” 42k”2M1 i e

3Gn~~k2q!2!u~p2!G . ~3.14!

In general these matrix elements depend on the initial
final spin states and are not proportional toM0 times a spin
independent factor.

Now consider the approximation used in@1# to evaluate
these matrix elements which we call here the soft-pho
approximation. The integrands inM4 and M5 have two in-
frared divergent factors @(k22l21 i e)((k2q)22l2

1 i e)#21 and are thus peaked when either of the two e
changed photons is soft, becoming divergent whenk→0 or
whenk→q. We therefore first rationalize the propagators
that all spin matrices are in the numerator and then evalu
the numeratorsin M4 andM5 at these two points@first set-
ting k50 and then settingk5q; note thatGm(0)5gm# but
make no changes to the denominators. A simple calcula
using the fact that we have on-shell particles shows tha
fact each of the numerators has the same value fork50 as
for k5q, viz., 4ip1•p2q2M0 in the case of M4 and
4ip3•p2q2M0 in the case ofM5. Taking this factor outside
of the integral we are left with a scalar four-point functio
independent of the particle spins:
2-3
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M458iZe2q2M0p1•p2E d4k

~2p!4

3
1

k22l21 i e

1

~k2q!22l21 i e

3
1

~k222k•p11 i e!

1

~k212k•p21 i e!
~3.15!

and

M558iZe2q2M0p3•p2E d4k

~2p!4

3
1

k22l21 i e

1

~k2q!22l21 i e

3
1

~k222k•p11 i e!

1

~k222k•p41 i e!
. ~3.16!

We note that in@1# an approximation is also made in th
denominators of these integrals, reducing these four-p
functions to three-point functions, but this is not needed
the conclusions of the present paper.

In the case ofM3 the integrand is peaked whenk50; we
therefore setk50 in all terms of thenumeratorof M3 again
using the fact that we have on-shell particles and find
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M3524iZ2e2p4•p2M0E d4k

~2p!4

1

~k22l21 i e!

3
1

~k222k•p41 i e!

1

~k222k•p21 i e!
. ~3.17!

With the soft-photon approximation the proton vertex corre
tion is a multiple ofM0 and, as withM2, the factor is inde-
pendent of the spins of the particles. Again because of
soft-photon approximation, the self-energy contribution
essentially the same as that obtained for the electron: s
the virtual photon in the self-energy diagrams is assume
be soft, its interaction with the proton is given bygm , as in
the case of the electron, so that the self-energy contribu
is obtained by subtractingLm(p2, p2) from the expression
given in Eq.~3.12!.

Thus, substituting the expressions forM1 , M2 , M3 , M4,
andM5 given in Eqs.~3.3! ~3.9!, ~3.17!, ~3.15!, ~3.16! in Eq.
~3.2! and adding the contribution from real soft photons~3.1!
we see that the cross section can be written in the form

dscorr5ds~11d!, ~3.18!

in which the radiative correction termd is independent of the
spins of the particles.
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