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Model independent radiative corrections in processes of polarized electron-nucleon
elastic scattering
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Explicit formulas for radiative correctiofRC) calculations for elasti@p scattering are presented. Two
typical measurements of polarization observables, such as beam-target asymmetry or recoil proton polarization,
are considered. The possibilities of taking into account realistic experimental acceptances are discussed. The
FORTRAN code MASCARAD for providing the RC procedure is presented. A numerical analysis is done for the
kinematical conditions of CEBAF.
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[. INTRODUCTION ton energy is considered to be small with respect to all mo-
menta and masses in the problem. So this paraméigr (
Precise polarization measurements of nucleon form facshould be chosen as small as possible to reduce the region
tors in electron scattering are an essential component of trevaluated approximately. However, it cannot be chosen too
research program at new-generation electron acceleratop§nall because of possible numerical instabilities in calculat-
such as the Continuous Electron Beam Accelerator Facility?d hard-photon emission. An exact calculation within the
(CEBAF) [1]. This unprecedented precision requires knowl-&PProach of Mo and Tsai has been performed only for the

edae of higher-order electromaanetic effects at a percerf@se oOf unpolarized deep inelastic scattering. At the end of
g ' gnet b the 1970s Bardin and Shumeiko developed an apprf@ch

level. The purpose of our work s to analyze radiative cory volving extraction and cancellation of infrared divergences
rections in elastic electron-proton scattering and develoﬂ)n 9 9

proper computational techniques that could be used in e)é/_vithout introducing this artificial parametéLater on many

! calculations were performed within this approach and a few
EglréTaetg:SIaito‘:‘ZILili’:Zn LaliEEBAF) and other electron ac- FORTRAN codes were created to deal with numerical calcula-

h d h diati | tions. The best known of them amERAD and POLRAD. A
The modern approach to radiative correcti®C) calcu-  yegailed review of the approach is presented in ReE. In

lations assumes exact calculations of the lowest-order modegl;g paper we use this approach to calculate the RC of lowest
independent correction. This correction includes the QEDyder to the transferred polarization and asymmetry in elastic
processes of radiation of an unobserved real photon, vacuuBlectron-proton scattering. The method allows us to calculate
polarization, and lepton-photon vertex corrections. Thes¢he model independent correction exactly. By “exact” we
processes give the largest contributions that can be calculatggean the calculation of the lowest-order correction for which
exactly. Uncertainties of the model independent RC carextraction and cancellation of the infrared divergence are
come only from fits and data used for structure functionsperformed without introducing the artificial parameter that
The calculation of model dependent correctidhex-type  separates the soft and hard parts in phase space, and for
diagrams, emission by hadronequires additional assump- which integration over photon phase space is performed
tions about hadron interactions, so it has additional purelyyithout approximations like peaking or leading logarithm.
theoretical uncertainties, which are hard to control. Thenstead, this integration is performed numerically within the
model dependent correction is much smaller compared tgiven accuracy. This accuracy does not usually exceed 0.1%,
leptonic radiation because it does not include a large logaso contributions of the order of the electron mass squared can
rithmic term In@Q*n7). In this paper we concentrate on the e dropped. In general, the result for the RC can be presented
contribution to the total RC. Treatment of the model depen-

dent correction requires different methods and will be the 2
subject of a separate investigation. OrRc™ @
dependent QED radiative corrections. The first one is conThe coefficientsA and B are responsible for the first-order
nected with the introduction of an artificial parametér)(  leading and next-to-leading contributions, respectively. They
separating the momentum phase space into soft and hard

malism and further developments for elagtjgscattering in A detailed comparison of explicit formulas obtained within the
Refs.[2—4]. For the soft-photon part, the calculation is per- two approaches considered is given in Rél.for the case of deep
formed in the soft-photon approximation, in which the pho-inelastic scattering.

AInQ—+B+O
m2

()

calculation of the model independent correction as the maiih the form of a series in powers ofi’:
m2
Q@
There are two basic methods of calculation of model in-
parts. One can find a classical review introducing this for-
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are independent of the electron mass, and our approach atored by the final proton kinematics, while electron momen-
lows us to calculate them explicitly. The term of order tum was integrated over. Therefore, the formalism of @J.
m?/Q? is always negligible for value®? in the Ge\f region  applies for this case.
and above. In this paper we calculate the model independent RC to
We should mention here that there exists another aptwo experimental situations which are currently dealt with in
proach that satisfies the properties listed above. It is a modicollaborations at CEBAF, Mainz accelerai@AMI ), and
fied method of electron structure functions. Usually this ap-MIT Bates: measurement of polarization asymmetry in terms
proach provides a direct calculation of leading terms in allof leptonic variables; measurement of asymmetry in recoil
orders. However, in Refl8] it was shown that it can be proton in terms of hadronic variables. Our approach allows
improved to obtain exactly the first-order next-to-leadingone to take into account the lowest-order RC exactly and to
contribution and even to reconstruct the main part of thecalculate the RC within experimental cuts.
second-order one. I[9] this approach was used to calculate

the radiative correction in the case of recoil polarization Il. KINEMATICS AND BORN PROCESS
measurement within so-called leptonic variables. ) )
The observed cross section of the process The Borrf cross section of the proce&® can be written
in the form
e(ky) +N(py)—e’(ka) +N(p2) 2 2 402
0 2 Q

, ) , , o dop=7——-dl'y=M{——, (5)
is described by one independent variable, which is usually 4psky 167S?

chosen to be the square of the four-momentum transfer.

There are two ways to reconstruct the variable when botivhereS=2k;p. Kinematical limits forQ? are defined as
lepton and nucleon final momenta are measured. In the first
case it will be denoted a®?= — (k,— k)2, and in the sec-
ond case it isQﬁz —(p,—py)?. It is clear that there is no
difference between these definitions at the Born level. How-
ever, emission of an additional photon in the final state ofvherem,M are the electron and proton masses. Because of
reaction (2) makes the definitions 0®? nonidentical. We axial symmetry the integration over the azimuthal angle
consider both cases in this paper. In the first case the struéan be performed analytically. However, in our case the ki-

0= 2< )\S

s ————, \=S-4m’M?, 6
S+m2+m2’ C ©

ture of the bremsstrahlung cross section looks like nematical cuts are dependent on this angle so we will con-
sider the two-dimensional Born cross section
do 3 d3k o 2 )
prrviadd] J—E KF<(Qp)A () M35 dQ%d¢
dQy ko dog=———dlg=M2———. @)
4p.kq 32m%s?

whereK is a kinematical coefficient calculable exactly in the

lowest order. It depends on photon variabl&.is a bilinear "€ born matrix element is

combination of nucleon form factors dependent@honly, o
which is a function of photon momentum. Usually only final M2=—L° w,,. )
momenta are measured in a certain range controlled by a QM

function of the acceptancd, which is 1 or 0, depending on o . )
whether the final particles make it to the detectors or not. ThéVe use standard definitions for tHenpolarized leptonic
integral(3) should not be analytically calculated for two rea- tensor and for the hadronic tensor

sons. The first one is the dependence of the form factors on 2
Qﬁ. We avoid using specific models for them. The second uo_ [

) . : W= WA )
one is that the acceptance is usually a very complicated func- =

tion of the kinematical variables, dependent on the photon

momentum. with
For the second method of reconstruction of the transferred
momentum squared, the structure of the cross section is 1 5 P1uP1y
W= "0upr W, = VTR (10
do 32 5 d3k
Eﬁ"“a ‘7: (Qh) k_O’CA (4) and Tp:Q2/4M2|
In thi th d form factor d t depend on th 2 GE+ 7Giy
n this case the squared form factor does not depend on the Fi=47,M 2G2,,  Fy=4M2—E_PM (11)
photon momentum and for# kinematics (4=1) this inte- 1+ 7,

gral can be calculated analytically. In the experimental con-

ditions at the Jefferson Lab th@Lab [1], both the final

electron and the proton were detected in order to reduce?Throughout the paper, by “Born” we mean “one photon ex-
background. However, elastic scattering kinematics was reshange.”
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It is convenient to define the contractions The polarization four-vector; can be expressed in terms
of the four-momentum of the particles in the reaction. The
Zeéngvw}WZZQz, (120  four considered cases correspond to four representations of
polarization vectors:
1
203=L0 w2, =—[S(S-Q)-M?Q?¥. (19 1 ( S )
vy 2 =—|ki——=p1/, 19
M Ui \/)\—s 1™\ P1 (
As a result, for the Born cross section we obtain the well 1
known formula _ 212 282
= (—SX+2M“Q*+4m-M“)k
T \/m[ 1
doy 2ma? i 2
d_Qz:SZ—QAlZ 05.7:;, (14) +)\sk2_(SQ2+2m Sx)pl],
hich can be reduced t a_ L 2M (k;—ky) (5=%)
which can be reduced to == 1—Ky)— ———p4 |,
e i
doy 4ma? GE-F TprA 15 .
d? Q'  1+7, 9 (2M2Q?— S X)k, + (2M2Q?2
Uay \/m[ S 1
in the ultrarelativistic approximatioM -<S-. +S,.9)k,— Q3(S+X)p,],
A. Polarized part of cross section where A = SX@—m?\,—M2Q* and A= Si+4M%Q?, S,

We consider two possible polarization measurements. = S—X. We note that the task of the calculation is reduced to
contraction of the leptonic tensors at the Born and RC levels

(1) The initial proton is polarized and the final electron is =™ ™<=/ =1 = : - PV
detected to reconstru€d?. In this case there are four experi- With W, using the corresponding polarization vector repre-

mental situations for asymmetry definition: the target is po-Sentation of the general form
larized anng(perpendicu]a)rto the beam og (q=p,—p1). 7=2(a,ky+ b,k +C,p1) (20)
Corresponding polarization four-vectors are denotedpas
(1) or ' (7). _ and subsequent integration. The variaklés calculated in
(2) Polarization and momentum of the final proton aredifferent ways for the Born and radiative processes. In the
measured. Two polarization states should be considered: thgst case it is defined é8— Q? and it depends on the inelas-
final proton is polarized alongz() and perpendicular#;) ticity S—Q?—v for RC. The definition of inelasticity is
to a given in the next section. It should be noted that we do not
If the polarization vector is kept in a general form the consider effects of normal polarization, because the polariza-
polarization part of the hadronic tensor can be written as tion parts of both the Born and model independent RC cross
sections are exactly zero in this case. It allows us to keep
0 : only three basis vectors in ERO).
Wi, = > W, Fi (16) The polarization part of the Born cross section is given b
i=3 p p . . 9 y
Eq. (14) for two additional terms in the sum ovier 3,4. The
functions 62 have the forms

4

with
B 2m 2
3 _ . SN/ 4 a\P1s79 17 aszv(QUkzg_ 7§Q%),
W,uV_ Ie,u,v)xo’ M W;/,V_IE,LLV)\G' M3 . (
mQPq 7
B__
For the case of initially polarized particles, we have to 0= M3 (2p1£—ka), (22)
choose the corresponding representation for the polarization
vector and structure functions in the forms where the lepton polarization vector can be defined as
Fom—2M2G Gy, Fi=—M2Gy—E_ M (19 _ 2[5 22
3= EGM 4= M 147, 5—\/TSE1_mP1- (22
when the total hadronic tensoW,, =W, ,+W? . In the If Q% is calculated in terms of hadronic variables, the
case of final polarization stateg){ ') the same formulas polarization vector expansion reads
are used for structure functiori$8) up to the different sign ) ) ) )
for the last term F,— — F). 7L r=2la tki+b +(p1—p2) + ¢ 1P4] (23)
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with (K1p1+kips) 1
'—0 b Q?+2M? , Q2 o VA(Kip1+kipo)?+0%(4M?—g?) 2 COSO/2’
aL: y L:_—r—; CL:—r—!
2ZM A 2MVAm Ill. RADIATIVE EFFECTS
and A. Leptonic variables
- Q2(Q?+4M?) e For the cross section of the radiative process
RPN W vl o e(ky) +N(py)—e'(kp) + ¥ +N(py), (30
y QS+ 2M?Q? o8 we have the expression
b2 do,= M; dr (31)
) " oA4piky T
, Q%2s-QY
Cr=— —2\/X vl (27)  The cross section of the process dependQﬁn/vhich for
hVAM simplicity is referred to agQ? in this section. The phase
Here Ap=SQ@(S—Q%)~M2Qi-m?\y, and \y=Q¥%Q2 P
+4M?). As in the case above, we keep the variaQ, 1 d®. d%. d3k
which is Q® andQ?+u for the Born and RC cases, respec- g, =——— P2 0%z —— 5(py+ki—ky—k—py)
tively. The quantityu is related to the invariant mass of the (24r)% 2P20 2Kz 2Ko
unobserved state. It is also called inelasticity and is defined (32

below [for the case of hadronic variables see Esf)]. o . _ o
It is easy to verify that the four-vectong and 5} satisfy ~ €an be parametrized in terms of three variables: inelasticity

the necessary conditions of normalization and orthogonality? =A?=M? (A=pyt+ki—kp), T=ka/kpy, and the angle
¢ between planesq(k) and (K;,k,). Using the result

In the rest frame of the final protqm= (M,0) the vector _ dQ® (om dv (7max v 2m
. . . . dFI'_ a dT d¢k y
of longitudinal polarization reads 4(2m)°S /g 4\/)\—0| min (L+7)2J)0
- - (33
7=(0n), n?=1. (28)

where A= (v+Q?)?+4M?Q? and we use the variable

The direction of the three-vectar coincides with the direc- nstead of the standard

tion of the three-vect052 in the laboratory system. There-
fore, | indeed describes the longitudinal polarization of the t=Q?+v—R, R

scattered proton. The four-vectoy; has the form (Oﬁ),

n-m=0, in both the laboratory and rest frame systems of thet allows us to present the final result in a form close to that
scattered proton. Thus, it describes the transverse polarizin Refs.[12—16. The limits of integration are defined as
tion in the scattered plane. It can be defined up to a sign only.

In the case of longitudinal polarization, only the term with 1
G2, contributes to the spin dependent part of the cross sec- vm= = (VA eVAp—2m*Q%~ Q%) (35)
tion. The reason is that the part proportional3pG,, goes 2m
to zero fory= 77”. The situation is just contrary in the case of

v
T 147

(34)

transverse polarization. A simple calculation gives 2Q%\s— Q¥(S+m?+M?)]
= 2 22 (36)
, ~ Q2S+2m?Q%+ VN g\

7 Gu_ [—q kip1+kip,

— == . 22

7y Ce M2 J4(kyp;+Kipo)°+0°(4M?—g?) ~S-Q2- M-Q 37)

(29) S

It is easy to verify that in the Breit system, whepg and
=(E,—q/2), p,=(E,q/2), q=(0,), the right side of Eq.
(29) coincides(up to a sign with the expression given in 2M2 7 axmin=v + Q2 |\ . (39)
[10]. Indeed, in this system;=&,=—q%/2 sin6g/2 (65 is
the electron scattering angle in the Breit systemd The matrix element squared of the radiative process is
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b The quantitiesSs and 6y appear after additional splitting of
2_ r ; ; ; ; L PP
Mr=—L,,Wy.,. (39  theintegration region over the inelasticityby the infinitesi-
h mal parametev:

The leptonic tensor of the radiative process is standard and 1 dn1k

can be found, for example, [14]. We note that here we use Ss= _f"dvf ———————Fr6(A—k)°—M?),
a more standard definition of the tensongth an additional ™ Jo (2mu)" *ko

factor of 2 compared to those from RéL4]). For contrac-

. —1 (vm dsk
tions we have Sy= 7]7 dvf k—F,Ré((A—k)Z_MZ), (45)
v 0

3
Ly, Wy, =4 \/)\_q21 RI736; . (400 We note that, in contrast to the Mo and Tsai formalism, here
: the artificial parametevT completely cancels in the final ex-
The functionss;; are similar to the ones given in Appendix B Pressions. The way to calculate these integrals was suggested
of Ref.[13]. However, there they are integrated oggr. We  in the[5] (see alsd15] and the review7]). In our case we
refrain from this integration because of possible dependenc’éave
of the acceptance function on this angle. The explicit form of

the functions in our general case is discussed in the Appen- v S(S-Q%
dix. 9 PP 5522 P|R+|nm)(|m—l)+|nw+s¢,
We note that the well-known formula for the soft-photon
approximation is immediately obtained on keeping the term v
with j=1 and restricting integration over asv;<v<uwv, Su=2(Im—1)In=. (46)
<S (small photon energy v
do, 2a v, dog These contributions have to be added to the vertex correc-
d—Qz = ?(Im_ 1)Inv—l d—Qz, (42 tion, which is standard:
. . m 1 3 a2
where | ,=In(Q?%n"?). For angular integration the formula  §,=—2 P,R+In; (|m—l)—§|§1+ Sim=2+ 5

(27) of Ref.[15] was used. 4
Straightforward integration over photon phase space is (47)
not possible because of infrared divergence. The first step qfor this sum we have the following expression where the

the solution is the identity transformation of the integrand jrared divergent ternP and the quadratic termfn are

explicitly canceled out:
O'R:(TR_(T|R+O'|R:0'F+O'|R, (42) p y

where o is finite for k—0 (here and below we use the g(55+ Syt 8y) = Sintt+ Oy, (48
shortened notation for differential cross sections m
=dog/dQ? and so oh There is some ambiguity in the

definition of og. Only the asymptotic expression in the where

limit k—0 is unambiguous.In our case we construat,g o b2
using the term withj =1 in Eq. (40) and form factors esti- Sint=— (I ) In———|
mated at the Born point. This term is factorized in front of m S(S-Q?)

the Born cross section as

, , 593 21|23+L,(1 MzQz)
2 [dk k k VR™ | 5Im— 4= 5In | L= — >
Uo_f_FIR' Fir= e (43 ™2 20 sQ S(S-Q%
o 2k0 2k1k 2k2k
2

As a result, the infrared part can be written in the factorized ~5 (49)
form

N o Here we used the ultrarelativistic expression for the function

(T|R:_5::{R0'0:—(58+ 5H)(To. (44) S(}S from [17] . . o
™ ™ Finally, the cross section that takes into account radiative
effects can be written as
3There is one more limitation. We must provide the conditions of Tops= 0071 (1+ Syt 8,ac) + OF . (50

applicability of the theorem about changing the order of integration ] o
and the limit. For example, uniform convergence is required. InHere the corrections;,; and J,,. come from radiation of

practice, this means that we may subtract the quantity with the sam@0ft photons and effects of vacuum polarization. The correc-
denominator. tion dyg is an infrared-free sum of factorized parts of the real
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and virtual photon radiation, ang is the infrared-free con-
tribution of the bremsstrahlung process:

C(S max d’T 2
= = R
3 _7: 0
_ 0 B |
x}i) J_Zl AR "Q —4F% 68—, RS (51)

Here A is integrated over the acceptance function.

B. Hadronic variables

For the cross section of the radiative process

e(ky) +N(py)—e’ (k) + (k) +N(p2), (52)
we have an expression similar to H§1):
M2
:
dO’r—mdrr . (53)

PHYSICAL REVIEW D 64 113009

 2Q% N\~ QAS+M*+M?)]

8
Q?S+2M?Q%+ sy o

and
Wmaxmin= 5 )(Q2+U+2m2+J—) (59)

The limits z,in max are defined as solutions of the equation
R,=0:

NoZmaxmin=B,* D, (60)
where
D=4[M?\q+m?Q*-Q*S(S—Q*~u)]
X[m2(w—u)?+uw(w—u—Q?)]. (61)

The two solutions of the equatidh= 0 give limits onw [Eq.
(59)].

The parametrization of photonic phase space and integration The matrix element squared of the radiative process is
over it developed for so-called hadronic emission within thecalculated as

Bardin and Shumeiko approafh] can be directly applied to
this case. Thus the phase sp#82) can be parametrized in
terms of three invariant variabl¢48,19; namely, inelastic-
ity u=(kp+k)%2—m?=2k,k, w=2k;k, andz=2p,k:

Zmax  dz

amyis), o] "

where R, comes from the Gramm determinaftl6R,
=A(kq,p1,P2,k)] and coincides with the standaRj func-
tion appearing in the Bardin-Shumeiko approfsH8]. Ex-
plicitly it reads

dQ%d¢
Ty ~(4m)%s

(54)

R,=A,z>—2B,z+C,. (55)

For completeness we give the coefficients in our notation:

A= Ng=(u+Q%)%+4Q*m?, (56)

B,=u(u+Q?)s,— (u— Q% Sw—2m’Q*(u—w),
= (USg— SW)2+4M2uw(Q?+u—w) — 4M*m*(u—w)?,

wheres,=S—Q*+w—u.

We note that we introduced the invariant variabl@hich
corresponds to the azimuthal angle in E2B). This variable
is more convenient for introducing explicit expressions for
experimental cuts.

The limits of integration in Eq(54) are defined as

(VN sVAy—2M2Q2—-Q29) (57)

m

2|\/|2

4Q? in subsections B, C i€?.

6 6

e e
Mf=—@L;VW,W o Tt Tt Tat Ta) (62
where
T3= VS ( W(Q z—2Q°Sut+ Q“uz—u<S)
S S
+ TQZ(w— 2Q?%) + W(4Q4+ 3Q%u+u?)—Sw|,
—2Q al +F4(2m?
T,= MBLST 4( -~ (Q?Su— Q2uz— 252U+ SIP
S
+25uz—2u22)+W(—2Q4+4Q28—2Q2u—2Q22
+2Su— uz)—282+SW+ZSz),
QZ
Ta4= 3S(aL 1F4Q%=2M%c| 1 F3—2b] 1F,Q?

2

! 2 m
—C 174Q%) w2
2SzQ@

uw

(Q%z—Su—2Sz+27%)

s S
+ 5 (25-w-22)+ (2Q*-25+u) .

The contributionT g is

m m? Q2
Tir=4 Wz"‘?—u—w To, (63

113009-6
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2
I m (Im ) I |m

To=— W[ZMZ}E(a{_,TQZ_C(_,TQz 5g=2

2

Ea

+2¢] 19+ QX (Q*-29) Fy(al 1

u 1 u u
’ ’ h _ _ m_ T2 M m
—-2b/ t—c/ Pl 6u=2(l,—1)In = 2In mﬂ—lnaz
The structure functions; and F, are defined in Eq(18) (ot =) — W—Z—Li (_ Um)
and are functions o®?. We note that the Born cross section wiimtwe vl g 2l Q?)
can be written in terms of, for a,,,b,,,c,, taken foru—0:
u u
S~ |U=|nQ—”2‘, lw=In 1+Q—r; . (69)
UO:WTOI (64)

Their sum and the contribution of the vertex function yield

The radiative cross section can be presented as again the result free of infrared divergence:

h 3 3, 1,
—ad J'dudwdz Svr=lm| o= lwt 5| = L= 1= 51h= 51 +2l,

A(T g+ T3+ T, +T3y). (65

OR™ 124 —
48 Q aN — RZ 2
—Li2 QZTU . (70)
Performing the explicit integration over the region of small m
; - m2 M2 02 ; ) ) . o
energies (B, <u,<m-,M%Q%3), we obtain the well The cross section that takes into account radiative effects
known result in the soft-photon limit: can be written as
h h
a fuzd 1 m? Q? | Wmax Tobs= 0o(1+ 6yt Syac) T OF . (72)
OR=— —O0p uj ——+ o T n
+ i - . .
. Y u uu+m’ U\/)‘—q Wmin The explicit expression foo]! is
2a| Uz(l 1) (66) h CUS fumd fwmaxd fzmax dz
=—In—(,—1)0,. Op=— —7 u w
U " F 4Q4SZ 0 Wmin Zmin TV =R,
B
The radiative cross section has an infrared divergence, so XLAMRFTTo T TatTaa) = Tir (72
for this case an identity transformation 1iKd2) has to be th TB—TB (T.TB
performed also. However, the form factor is not dependen‘(‘”t ir=Tir(To—To).
on photon variables, so only the acceptance function should
be subtracted. The relevant integrals look similar. As a result, C. Kinematical cuts
the infrared part can be written in the factorized form In this section we show how experimental cuts can be

introduced in this approach. As an example we consider the
@ iR @ .4 conditions of the experimeifi] at CEBAF.
TIrR=_0R 0o= — (st ). (67) The following restrictions on the momentum of the final
electron and proton have to be made. We consider the high-
. » o resolution spectrometéHRS) [1] as a rectangular area with
The quantitiesis and 6, appear after additional splitting of gome energy acceptance. We describe this rectangle by two
the integration region over the inelasticityby the infinitesi- angles between corresponding plangs® and 05,;3. For one
mal parameteu: of the scattered particles these angular definitions are given
in Fig. 1. The upper index corresponds to the detected par-
107 gn-1 ticle, namely, the electron or the proton. The angles and mo-
o= —f duf ———————Fr(A—k)2—m?), menta of the final particles being measured in the laboratory
™ Jo (2mp)" *ko frame have to be expressed in terms of kinematical invari-
ants. The simplest way to do it is to apply the formalism of
—1 (up d3k Gramm determinants, for which a detailed description can be
o= _f* duf —Fr(Ap—K)?2—m?), (68)  found in Ref[11]. We will give starting expressions in terms
T Ju Ko of four-momenta and Gramm determinants as well as explicit
results for the invariant variables used in E§4). In terms
whereA,=k;+p;—p, andF g is defined in Eq(43). The  of Gramm determinants the momer{ta the rest frame of
integration gives the following explicit results: p,) of the final proton and electron are given by the formulas
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2

4Q%\ sk gz
+4Q2M2uw+ Q?(2w+2;)z,(Q%+ u) + ZuQ?

RECOIL PROTON

SiPAp=— {[S(u—w)—z,u+ Q?w]?

+22,Q%uw—2Sz(u+w)Q? (79

BEAM DIRECTION where\,=S§,—2M ng , ng Q?+u—w, andz;=z+u
—w. Now we can define the angles of the final electron for
the radiative process:

FIG. 1. Recoil proton angle definitions. The beam and the sin 0§=sin(¢+A¢)sin Oi2,
hadron-arm detector of the HRS define the horizontal plane.
tandf=cog ¢+ A p)tanf,,, (80)
2 A(p1,p2) 2 A(py,k2) ) .
Pol*=——F—, [kl*=——Z—- (73  where 0y, is the polar angle of the final electron. For the
p p
1 ! latter we have
This gives immediately for the Born process _ 4Q§7\sz2
S|n20k2=2—2 (81
P N S
P2l =5y Ikl =57 (74
27 2m YoM

IV. NUMERICAL RESULTS

for bgth Bozrnz and radlatl\zle processes. Hevg=(S-Q? In this section we present tHORTRAN code MASCARAD
—21)°—4M Mm%, 53,=S—- Q-7 o _ (Sec. IVA) developed on the basis of the formalism pre-
The cosine of the polar angle of the direction of the finalgenteq in the last sections. This code uses Monte Carlo meth-

proton (with respect to the beam directipis defined as ods to calculate the radiative corrections to the observable

) quantities in polarize@ p scattering measurements. The nu-

K1P1 P2P1— P71 P2K1 merical results of applying this code for the kinematical con-

A(p1. k) A(P1,Py) ditions of Jlab are given in Secs. IV B and IV C with lep-

tonic and hadronic variables, respectively. In the last

It gives subsection we discuss the influence of experimental cuts on
observable quantities in polarized scattering.

COSOp,= (75)

AN M?
AnS?

sir? Op2= (76) A. FORTRAN cOdeMASCARAD

There are two variants of the codeAscARAD L.F and
. 22 e A2 MASCARAD_H.F dealing with leptonic and hadronic variables,
where\s,=SXQ -~ SM?. We have to us&=S-Q” and respectively. The first code does not require any external li-

-02 —g_02_
?X_ZQ f(?r thﬁ Bog,] Process ank=S-Q ¢ r:‘ and st h braries. However, the histogramming bBgook can be op-
=Q"+u for the radiative one. In terms of the angle the 5 a1y included in the second variant. In this case

horizontal and vertical angles of the proton momentum are ., ,s-arap H.F requiresCERNLIB installed. In the external
file one can choose the kinematical variables, the accuracy of

sin6)=sin¢ sin by, the calculation, and the value of the cut on inelasticity. An
option to include kinematical cuts described in Sec. Ill C is
tan ;= cos¢ tand,, (770  available forMASCARAD_H.F. As output one has the value of
the Born cross section and the radiative correction factor
where ¢ was introduced in Eq(7). (with estimation of the statistical erpoat chosen kinematical

At the Born level all vectorsy,, k;, andk,) are in the points. The source code forASCARAD can be obtained at

same plane. However, for the unobserved photon there is tP://www.jlab.orgf-aku/RC/
nonzero anglé\ ¢ between the planek{,p,) and (k;,k,).

In terms of Gramm determinants it is defined as B. Numerical results: Leptonic variables
Both the spin averaged and spin dependent parts of the
(pl ky pz) cross section¢" andoP) can be presented as
ki k
cosA = Pr 4 % (79 ohb= (1+ )P+ kP, (82

A(p1,ky,k2)A(pe,Ky,P2)
Both the factorized correctiod and the unfactorized cross
Explicitly we have section coming from the bremsstrahlung process contribute
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- 1g 02
E AL

01

_0‘5:.‘le.m....\H.‘l.‘..l.”‘|.‘.w....\u.
0 o5 1 15 2 25 3 35 4
v,,GeV?
0 | | | | i 0 | | | | |
1 2 3 4 5 1 2 3 4 . . . .
5 " 2 ) FIG. 3. Relative RC to asymmetries defined in EBf}) vs value
Q% GeV’ Q% GeV

of inelasticity cut forQ?=3 Ge\?; E=4 GeV.

FIG. 2. Born(solid line) and observeddashed ling asymme-
tries vsQ?. No kinematical cuts on inelasticity were used. Electron do'tp doP

ot ) dog
b —4 GeV. —cos e '
eam energyE e dQ%dv dezdv desz

(85

to the cross section. When polarization asymmetries of th ecause of the dependence of the polarization vectors on
elastic processes are considered, the factorized part of the P P

total RC tends to cancel but the unfactorized part can give aW?laStt'.c'tY[ie? Eq(19) and definitions thergthis angley is
important contribution. a function ofv-
Absolute and relative corrections to the asymmetry can be

. 2 202
defined agsee Eq(82)] SirPy= 4M )‘, cosy= SS+2M°Q ' (86)
Ashq VAshg
(1+8)oh+ok b

AAi:Ai_'A‘io:—(bL 8ot ol T (83 and only unintegrated cross sections are related a$85y.

o 7R 0 This sine strongly suppresses the cross section of the hard

A A 5 —5 photon emission. Weighted with the sine and cosine, the

= o__p _"u (84)  cross sections in the right-hand side of E85) have the

Aio 1+5+46y same signs and similar magnitude and therefore compensate

. , . ) each other. As a resulf, <, and the asymmetrr has a
where the indexi runs over all considered cases: large negative contribution.

=L,T,qL.qT; d,,=0g"ag”. Here the corrections is In practice, the RC to the asymmetries can be essentially
usually large because of contributions of leading logarithmsyeqyced by applying a cut on the missing mass or inelasticity
However, it exactly cancels in the numerator of the expresyich is also a measured quantity in elastic electron-proton
sion for the correction to the asymmetry. This is the reasorcattering. In Fig. 3 we show how these relative corrections

why the correction to the cross section can be large, whilgjepend on the value of the cut on missing mass or inelastic-
the correction to the asymmetry is relatively small. ity.

The Born and observed asymmetries are presented in Fig.
2. The four lines correspond to the four considered cases
defined in Sec. Il A. No cuts were used for the missing mass.
As a result, hard-photon emission gives different contribu- As in the case of leptonic variables, let us define the rela-
tions to the spin averaged and spin dependent parts of tHéve RC to the ratio of recoil nucleon polarizatioRs /P as
cross section due to its unfactorizing properties. For longitu-

C. Numerical results: Hadronic variables

dinal asymmetriess,> é, and there are positive contribu- _ PT/PL_Pg/PE 87)
tions to the RC. The situation with transverse asymmetries is PTGIPGL '
opposite.

One can see that the transverse asymmaAtrywith re-  In Fig. 4 this correction is given for several values of the cut

spect to the beam direction has a large correction. This is n@n missing mass. It can be seen that the radiative correction
in contradiction with the other plots in this figure. The polar-in this case is smaller than in the case of leptonic variables.

ized parts of the cross sections in the casksT] and In practice, however, the experimental situation can be
(qL,qT) are related to each other by some unitary transforimore complicated than simply applying a single kinematical
mation cut on the missing mass. In past and future experiments
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0 A TABLE |. The results for the RC to the asymmety /P, .
3 1
0002 \ ) E (GeV) Q2 (GeW?) A (%)
-0.004 [ 0.934 0.45-0.53 —-1.01
0,006 i 0.934 0.77-0.81 —1.54
r 1.821 1.11-1.25 —0.95
-0.008 | 3.395 1.37-1.59 —0.59
001 5 3.395 1.65-1.89 —0.64
: 4.087 1.75-2.01 -0.62
0012[  1-v_m=0.1GeV’ 4.090 2.30-2.64 -0.71
ool 2-v.me03Gev? 4.087 2.77-3.17 -0.80
: 4.090 3.27-3.67 -0.95
0016 |- 3-nocutonv_m 3
I 4.845 35 —-0.80
B e M —— 4.845 4.2 -0.96
@, GeV? 5.545 4.9 -0.95
6.045 5.6 —-0.97

FIG. 4. Relative RC to the ratio of recoil proton polarizations vs
Q? for three values of inelasticity cut.

_ _ ) case it escapes unmeasured or is integrated over.
[1,20] at JLab on measuring the ratio of elastic form factors —pg explicit formulas for the lowest-order model indepen-

of the proton, all the events appearing in deteCtavere  gont radiative correction are exact up to the ultrarelativistic
accepted for analysis. To calculate the RC in this situation W& pproximation which neglects the termsn?/Q2. However
ha_ve to apply all cuts discussed in the previous section. Tablg\is is not a limitation of the approach. These terms can
| gives the resullts for the pajst] and future[20] experiments  gqqijly pe restored if needétbr example, if the approach is

(above and below the lineAs we can see the RC does not applied to muon scattering and accuracy-efn?/Q? is re-
exceed 1%. quired g

In contrast to the case of inclusive deep inelastic scatter-
V. DISCUSSION AND CONCLUSION ing, the integration here is left for numerical analysis. All

integrals are finite after using the procedure of covariant can-

In this paper we applied the approach of Bardin and.ejiation of infrared divergences. This form of solution al-
Shumeiko[S] for calculation of the model independent ra- 15,5 one to include acceptance effects in the integrand. The
diative correction of Iqwest order in processes of elastiGynction of acceptance usually depends on the final angles
electron-proton scattering. Current experiments on the progng momenta, which can be expressed in terms of integration
cess measure different polarization observables such as spjBiaples. A proper way to do this is discussed in Sec. Il C.
asymmetries in different combinations of polarizations of o the hasis of the exact formulas, therRTRAN package
initial particles and the ratio of recoil proton polarizations, \;ascaArap was developed. It includes codes for both the
allowing one to access t_he ratio of e!ectroma_gnetic form,fac'electron and hadron variable measurements. Applying the
tors of the proton. That is why special attention was paid tq5ckage to the radiative correction procedure allows one to
radiative corrections to the polarized parts of the cross seqpcjude the model independent correction in the data analysis
tion. _ _of current experimentgincluding polarizatioh of elastic

The chosen method of calculation allowed us to obtaing|ectron-nucleon scattering. Our numerical analysis shows
explicit formulas in the cases of so-called electron and hadgat radiative effects can be important especially in the cases
ron variables. They correspond to the cases when the king (ransversely polarized targets. However, using kinematical
matics of the measured process is reconstructed from thgis such as a single cut on inelasticity or a cut on kinemati-

momentum of the final electron and proton, respectively. Itca| variables of the secon@indetectefi particle allows one
was shown that, although the formulas for the Born case arg, reduce the effect considerably.

exactly the same for both cases, all ingredients of the RC
calculation are different in these cases. The phy<icaki-
nematical reason for this is the fact that in the first case the ACKNOWLEDGMENTS
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APPENDIX where

The functionst;; are defined the same way as in Appen- F= 1/(277\/E)’ Fir=F,, — Q?Fy,

dix B of Ref.[12] or with more details in Appendix B of Ref.

[13]. However, there the formulas are integrated over theand

photon azimuthal angleor equivalently over; see Eq(B7)

of Ref.[12]] Below we define the procedure for writing the 1 5 -

explicit form of these functions in our case. 2= \/T[Q Sp+ T(SS+2M?Q%) —2M {1, cosehil,
Formulas(B1),(B2) of Ref.[12] or (B.1)—(B.11) of Ref. a

[13] can be applied unchanged for our case. Instead of the

functionsF from (B5) [12] or (B.12) [13] we use the follow- 2= —[Q%S,+ 7(XS,—2M?Q?) — 2M \\ , cos¢ ],

ing expressions: g

F F F m?  m? with
Fa=22, =gty Fe=Fl 252 2034 2
172 1 2 Z; I A= (7= Tmin) (Tmax— T)(SXQZ_M Q"—m )\q)-
(A1) (A2)
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